|
|
|||||||||||||||||
|
|||||||||||||||||
|
|||||||||||||||||
| Fotografii | Monede | Timbre | Schite | Cautare |
Iwasawa graduated in 1940 and remained at Tokyo University to undertake graduate studies. He also was employed as an Assistant in the Mathematics Department. Although the great tradition in number theory at Tokyo inspired him to an interest in that topic, some of his early research contributions were to group theory. The Second World War disrupted life in Japan and essentially ended Suetuna 's research career. Iyanaga did not fare much better. He wrote:
Clearly Iwasawa found this a most difficult period in which to try to complete work for his doctorate. However, despite the difficulties he succeeded brilliantly, and was awarded the degree of Doctor of Science in 1945. It was not without a high cost, however, for after being awarded his doctorate he became seriously ill with pleurisy and this prevented him returning to the University of Tokyo until April 1947. For a glimpse of the research that Iwasawa undertook at this time we look briefly at the paper On some types of topological groups which he published in the Annals of Mathematics in 1949. Iwasawa's results are related to Hibert 's fifth problem which asks whether any locally Euclidean topological groups is necessarily a Lie group. In his 1949 paper Iwasawa gives what is now known as the 'Iwasawa decomposition' of a real semisimple Lie group. He gave many results concerning Lie groups, proving in particular that if a locally compact group G has a closed normal subgroup N such that N and G/N are Lie groups then G is a Lie group. In 1950 Iwasawa was invited to give an address at the International Congress of Mathematicians in Cambridge, Massachusetts. He then received an invitation to the Institute for Advanced Study at Princeton and he spent two years there from 1950 until 1952. Artin was at the Institute during Iwasawa's two years there and he was one of the main factors in changing the direction of Iwasawa's research to algebraic number theory. In 1952 Iwasawa published Theory of algebraic functions in Japanese. The book begins with an historical survey of the theory of algebraic functions of one variable, from analytical, algebraic geometrical, and algebro-arithmetical view points. Iwasawa then studies valuations, fields of algebraic functions giving definitions of prime divisors, ideles, valuation vectors and genus. A proof of the Riemann -Roch theorem is given, and the theory of Riemann surfaces and their topology is studied. It was Iwasawa's intention to return to Japan in 1952 after his visit to the Institute for Advanced Study but when he received the offer of a post of assistant professor at the Massachusetts Institute of Technology he decided to accept it. Coates , in [ ), describes the fundamental ideas which Iwasawa introduced that have had such a fundamental impact on the development of mathematics in the second half of the 20th century. Iwasawa introduced:
Iwasawa first lectured on his revolutionary ideas at the meeting of the American Mathematical Society in Seattle, Washington in 1956. The ideas were taken up immediately by Serre who saw their great potential and gave lectures to the Seminaire Bourbaki in Paris on Iwasawa theory. Iwasawa himself produced a series of deep papers throughout the 1960s which pushed his ideas much further. R Greenberg, who became a student of Iwasawa's in 1967 wrote:
In 1967 Iwasawa left MIT when he was offered the Henry Burchard Fine Chair of Mathematics at Princeton and it was not long after he arrived there that he took on Greenberg as a research student. We learn a lot about Iwasawa if we look at Greenberg's description of how Iwasawa supervised his studies:
In the late 1960s Iwasawa made a conjecture for algebraic number fields which, in some sense, was the analogue of the relationship which Weil had found between the zeta function and the divisor class group of an algebraic function field. This conjecture became known as "the main conjecture on cyclotomic fields" and it remained one of the most outstanding conjectures in algebraic number theory until it was solved by Mazur and Wiles in 1984 using modular curves. Iwasawa remained as Henry Burchard Fine Professor of mathematics at Princeton until he retired in 1986. Then he returned to Tokyo where he spent his final years. He published Local class field theory in the year that he retired:
Iwasawa was much honoured for his achievements. He received the Asahi Prize (1959), the Prize of the Academy of Japan (1962), the Cole Prize from the American Mathematical Society (1962), and the Fujiwara Prize (1979). The importance of his work is summed up by Coates :
Source:School of Mathematics and Statistics University of St Andrews, Scotland |