|
|
|||||||||||||||||
|
|||||||||||||||||
|
|||||||||||||||||
| Fotografii | Monede | Timbre | Schite | Cautare |
He attended the Sakata Middle School from 1925 where he was first introduced to mathematics. Shigeo lived in a dormitory, rather than at home, and the mathematics teacher at the school looked after the boys in the dormitory. He loved to explain mathematics to Shigeo and there were many opportunities. In 1929 Shigeo moved from middle school to high school, entering the Second High School at Sendai. There were academies in Japan for the brightest pupils who went to the one corresponding to the area in which they lived in order to prepare for a university education. Sasaki therefore, after showing great talents at middle school, made the natural progression to Sendai where he studied for three years. Although in earlier years there were no mathematics texts in Japanese, by the time Sasaki attended High School there were Japanese texts on algebra, analytic geometry, trigonometry and calculus, all of which he studied. The book he read at this stage of his education which he found most attractive was a Japanese translation of Salmon 's A treatise on conic sections. Sasaki graduated form the Second High School and entered Tohoku Imperial University at Sendai in April 1932. He was particularly interested in the courses taught by T Kubota, one of the professors. These included several different geometry courses, including projective geometry, conformal geometry, non-Euclidean geometry, differential geometry, and synthetic geometry. Sasaki writes :
In addition Sasaki, who was by now becoming fascinated by differential geometry, read some classic differential geometry texts including ones by Blaschke , Eisenhart , Schouten , and Cartan . He graduated in March 1935 and remained at Tohoku University to undertake research on differential geometry under Kubota's supervision. In January 1937, Sasaki began his career as a lecturer at Tohoku University while he continued to undertake research for his doctorate. He writes :
It was this last series of three papers which formed the basis of Sasaki's doctoral thesis which he presented in 1943, receiving his doctorate in July of that year. A year later he was promoted to assistant professor. There were major difficulties in carrying out research in these war years since, quite apart from military reasons and problems caused by bombing, international mathematical journals and texts were not reaching Japan. Sasaki studied various classic papers which had reached Japan before the war including ones by G D Birkhoff , Morse , Seifert and Threlfall, and Rado . During the early 1940s Sasaki wrote a major text Geometry of Conformal Connection in Japanese, completing the manuscript of the book in 1943. However, it was impossible to publish the book immediately after it was written due to problems caused by the war. It was eventually published in 1948. K Yano, who undertook research on the same topic, explains the context of the book:
Not long after the end of the war, Kubota retired and in December 1946 Sasaki was appointed to fill the vacant chair. He spent a period at the Institute for Advanced Study at Princeton from September 1952 to May 1954. He collaborated with Veblen and Morse during this time. He also visited Chern at Chicago where he spent June and July of 1954. In 1974 Chern visited Sasaki at Tohoku University. He writes :
Sasaki remained in the chair at Tohoku University until he retired in March 1976, at which time he took up an appointment as professor at the Science University of Tokyo. Among the topics Sasaki contributed to over a long research career were Lie geometry of circles, conformal connections, projective connections, holonomy groups, Hermitian manifolds, geometry of tangent bundles and almost contact manifolds (now called Sasaki manifolds), global problems on curves and surfaces in various spaces. He wrote a major text Differential geometry : Theory of surfaces which, S Funabashi, writes:
Source:School of Mathematics and Statistics University of St Andrews, Scotland |